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We investigate the physical consequences of orbital current patterns �OCP� in doped two-leg Cu-O Hubbard
ladders. The internal symmetry of the pattern, in the case of the ladder structure, differs slightly from that
suggested so far for cuprates. We focus on this OCP and look for measurable signatures of its existence. We
compute the magnetic field produced by the OCP at each lattice site and estimate its value in view of a possible
experimental detection. Using a renormalization-group �RG� analysis, we determine the changes that are
caused by the SU�2� spin rotational symmetry breaking which occurs when the OCP is present in the ground-
state phase diagram. The most significant one is an in-plane spin-density wave gap opening in an otherwise
critical phase, at intermediate dopings. We estimate the value of this gap, give an analytic expression for the
correlation functions and examine some of the magnetic properties of this new phase which can be revealed in
measurements. We compute the conductance in the presence of a single impurity using an RG analysis. A
discussion of the various sources of SU�2� symmetry breaking underscores the specificity of the OCP-induced
effects.
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I. INTRODUCTION

More than two decades after the experimental discovery
of a pseudogap in the phase diagram of high-temperature
superconductors �HTSC�,1 a microscopic explanation of its
origin still remains elusive. Many scenarios have been
proposed2–9 but so far no consensus has emerged on any
particular one. Among the contenders are proposals that the
pseudogap might be linked to current formation. It was sug-
gested that staggered current patterns �d-density wave
�DDW� phase� �Ref. 5� would lead to a pseudogap due to the
doubling of the unit cell. An alternative uniform current pat-
tern was proposed by Varma.10,11 In this latter case the three-
band nature of the system is crucial, since currents flow
along closed loops formed by Cu-O bonds in such a way that
translational symmetry is preserved, while time-reversal
symmetry is broken. On the experimental front specific sig-
natures compatible with uniform currents where
observed12–15 even if the issue is still controversial.16,17 On
the theoretical side significant efforts were made to probe the
possible existence of such a phase, either using numerical
approaches18–20 or starting from Mott insulating side.21

As a way of investigating the physics of these states in a
more controlled way and also in view of possible connec-
tions with experimental systems,22–26 phases exhibiting or-
bital current patterns �OCP� were also considered in the con-
text of two-leg ladders.27,28 Indeed for this essentially one-
dimensional �1D� case, various analytical tools allow one to
explore the consequences of such an unusual phase. In pre-
vious work29,30 we established that in the weak-coupling
limit of Cu-O Hubbard ladders there exists a range of doping
with a quasilong-range ordering of orbital currents, such that
the pattern is symmetric with respect to the exchange of the
two legs �o-OCP�. In these studies, however, possible
changes in the symmetry of the system caused by the forma-
tion of the orbital currents was not taken into account. Our
analysis of the two-leg ladder problem was based on the

assumption that the spin degrees of freedom were totally
decoupled from the motions of the carriers in real space.
Although this is a very good starting point when the order
parameter is small, it is interesting to investigate the conse-
quences of such a coupling. In particular, in the presence of
a static pattern of currents, it is natural to expect that the spin
of the electrons will couple to the generated moment, and
lead to interesting spin-orbit effects.

The aim of the present paper is to explore and to discuss
physical effects which are occurring in response to the
o-OCP. Anticipating the results presented below, the main
consequence of the o-OCP is the appearance of magnetic
moments which break SU�2� spin rotational symmetry.
While measuring the primary �first-order� response of the
system to the o-OCP is expected to be experimentally chal-
lenging, these collateral effects constitute clear fingerprints
of the existence of such a phase. We also check the stability
of the o-OCP itself with respect to the second-order pertur-
bation which couples the order parameter with the spin of the
electrons. We argue that SU�2� symmetry is fairly well pro-
tected �in the absence of crystalline anisotropies� and that its
breaking is a telltale of the existence of the o-OCP.

The paper is organized as follows: at the beginning of
Sec. II we introduce the Hubbard model for two-leg Cu-O
ladders and we review the main results that were obtained for
this model in the weak-coupling renormalization-group �RG�
approach. Next we derive the additional terms that arise in
the presence of the o-OCP. The magnetic moments that they
induce in the ladder are calculated and the first-order effect
that they generate are also discussed there. New terms in the
Hamiltonian will be derived. Section III is devoted to an RG
analysis of the generalized ladder model obtained in the pre-
vious section. Experimental consequences entailed by these
results are described in Sec. IV. Lastly, in Appendix, we dis-
cuss other possible sources of SU�2� symmetry breaking in
two-leg Cu-O ladders �such as Rashba effect�.
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II. MODEL

Let us begin with a brief review of two-leg Cu-O ladder
physics. We consider a two-leg Cu-O ladder with local inter-
actions. The Hamiltonian of this system contains two parts:
the kinetic energy of electrons moving on the lattice HT and
electron interactions Hint,

H = HT + Hint. �1�

In the SU�2� invariant case, the physics of this Hamiltonian
is known �assuming that Hint is treated as a perturbation of
the kinetic term�.29,30 In the first part of this section, we recall
its main characteristics, we show the condition required for
the o-OCP to exist, and we also introduce relevant notations.
In the second part, we explain how the o-OCP breaks spin
rotational symmetry and we derive new terms in the Hamil-
tonian that arise because of the broken symmetry. In prin-
ciple, these terms affect both HT and Hint. This secondary
effect is caused by the presence of the o-OCP.

A. Cu-O Hubbard ladder

Including two Cu and five O atoms in the unit cell, the
tight-binding kinetic-energy part HT reads

HT = �
j�
� �

m�Cu
�Cunmj� + �

m�O
�Onmj�

− �
m�Cu

t�amj�
† �bmj� + bmj−1,�� + H.c.�

− �
m�Cu

t��amj�
† �bm+1,j� + bm−1,j�� + H.c.��

−� �
m�O�leg�

tpp�bmj�
† �bm+1,j� + bm−1,j� + bm+1,j−1�

+ bm−1,j−1�� + H.c.�� , �2�

where amj��bmj�� is the creation operator of holes with spin �
on a copper �oxygen� site �j is a site along chain and m labels
the atoms in each cell�; nmj�

Cu =amj�
† ·amj� We use hole notation

such that t, t�, tpp are all positive. �=�O−�Cu is the differ-
ence between the oxygen and copper on-site energies.

The model is reduced to two low-lying bands crossing the
Fermi energy. They are denoted o �symmetric under the ex-
change of the two legs� and � �antisymmetric under the ex-
change of the two legs�. With � �=0,�� and � denoting the
band and the spin index, respectively, the Hamiltonian reads

HT = �
k��

e��k�nk��, �3�

where

amk� = �
�

�m�a�k� �4�

and e��k� and �m� are the eigenvalues and components of the
eigenvectors of the Hamiltonian matrix �see Ref. 29�.

In the low-energy limit one may linearize the dispersion
relation in the vicinity of the Fermi energy,

HT = �
�q��Q

�
r��

rqVF�a�rq�
† a�rq� �5�

and it is easy to bosonize this free fermion theory.31,32 Two
charge �c� and spin �s� boson phase fields ��x� are intro-
duced for each fermion species �x is the spatial coordinate
along the ladder�.

We also introduce the phase fields 	; their spatial deriva-
tive 
�x�=��	�x� is canonically conjugated to ��x�. Now
the Hamiltonian may be rewritten using the above phase
fields. The kinetic part and those pieces in Hint which can be
expressed as density-density terms give rise to the following
quadratic form:

H0 = �
�
	 dx

2�

�u�K����
��2 + � u�

K�
���x���2
 �6�

in the diagonal basis B0. �=1,2 ,3 ,4 labels the eigenmodes
�1, 2 are spin modes and 3, 4 are charge modes29� For the
noninteracting system one has K�=1 for all modes; the diag-
onal density basis is then the bonding/antibonding one Bo�

�the momentum k� associated with the rungs is either 0 or
��. The other basis which is commonly used in the literature
is the total/transverse one, B+−. It is related to Bo� by,

��+�−� =
��o � ���

�2
, �7�

where �=c or s, depending on which particular density one
considers.

The interaction part, in fermionic language, is given by

Hint = �
j
� �

m�Cu
UCunmj↑nmj↓ + �

m�O
UOnmj↑nmj↓

+ �
m�Cu,n�O

�
�,��

VCu-Onmj�nnj��� . �8�

Equation �8� gives rise to two types of terms: the first ones
are of the forward scattering type and they can be cast in a
quadratic form �����x��2 in bosonization language. These

terms are then incorporated in the above-mentioned matrix K̂
of Luttinger liquid �LL� parameters, and hence they are

treated exactly in this procedure. Since the form of K̂ de-
pends on the basis in which the densities are expressed, the
Hamiltonian will take the simple form Eq. �6� in the eigen-

basis of the matrix K̂. The remaining interaction terms yield
nonlinear cosines and these are the ones for which the RG
procedure is required. In Refs. 29 and 30 we showed that the
eigenbasis for the spin and for the charge modes rotate dur-
ing the RG flow. Two fixed points were found, namely, B+−
and Bo�. Interband physics dominates in the former case
�mixing of the o and � bands� and intraband physics, in the
latter case. Close to half filling �low-doping regime�, B+− is
the fixed point basis for the spin and the charge modes. Both
spin modes are gapped and so is one of the charge modes.
Using the notation of Balents and Fisher33 the ladder is in the
C1S0 state �CnSm denotes n �m� gapless charge �C� �spin S
modes�. For an intermediate range of dopings, B+− is the
fixed point basis for the spin variables and Bo� the fixed
point basis for the charge variables. This is the C2S2 regime
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when all modes are gapless. The decoupling of the spin and
of the charge eigenbasis is responsible for this quantum criti-
cal state. For higher dopings, Bo� is the fixed-point basis for
the spin and the charge modes. The ladder is in the C2S1
phase where the o spin mode is gapped. The corresponding
phase diagram, which was established in Refs. 29 and 30, is
shown in Fig. 1.

A noteworthy result that came out of our analysis was that
the symmetry of the OCP is that of the o band, for the Cu-O
ladder. What is more, there exists a range of values of tpp,
above some critical hopping where this phase is dominant. In
the following, we present a detailed discussion of experimen-
tally accessible effects caused by the presence of this unusual
phase.

B. Primary effect induced by the o-OCP: Magnetic moments

When the o-OCP is present, its current pattern I�x� gen-
erates a local magnetic field B�x� at each site x of the lattice.
This is the quantity that we are interested in. The value of the
field can be obtained from the Biot-Savart law

B�x� =

0

4�
� I�x�

dl � r

r3 =

0

4�
�

n

In�
n

� dl � r

r3 . �9�

r is the vector joining the center of an infinitesimal element
of current Idl to the lattice site x. In the second equality, the
prime on the integral means that we are integrating over an
elementary Cu-O loop �triangle�—denoted by n—on the lad-
der; we sum over all triangles and we use the fact that current
is conserved for each loop n of the lattice.

To perform the summation in Eq. �9�, we first single out
those triangles that belong to the particular unit cell that
contains the lattice site x; we immediately notice that we get
a zero net contribution whenever �1� the current flows in a
direction that passes through the lattice site x �the cross prod-
uct dl�r gives zero�, �2� the high symmetry of the OCP
causes a cancellation of the fields due to currents connected
by mirror symmetry �for that reason, the field on the on-rung
oxygen is equal to zero�

These properties can easily be accounted for if one re-
writes the magnetic field using a multipole expansion of the
vector potential

A�x� =

0

4�
�

n

In�
m

1

rn
m+1� �r��mPm�cos 	̄�dl . �10�

There are no magnetic monopoles, dipole contributions van-
ish because of the cancellations described above and so do
quadrupole contributions inside each cell. Symmetry allows
us to conclude that octupoles are the lowest-order nonvan-
ishing terms. The above formula can be significantly simpli-
fied thanks to the fact that all atoms lie in the same plane

from which we have cos 	̄=1; we can also assume that the
approximate distance between the moments r� is equal to
unit-cell size a.

Thus, we notice that we may get an accurate estimate of
the contribution of all the other cells, if we assimilate them
to octupole moments. Basically this approximation amounts
to replacing the primed integrals within each triangle by a
number �the magnetic moment at the center of each elemen-
tary triangle�. The current creates a dipole moment perpen-
dicular to the plane of the triangle �and proportional to the
current flowing around it�. Four neighboring current tri-
angles, centered at a single, nth Cu site, define an elementary
octupole ��n� �with a shape of a square�. Then the magnetic
field is approximated as a sum of octupoles along the ladder,

B =

0

4�
 ��x�
a5 + �

n
� ��n� − ��− n�

r�xn�5 +
��n� − ��− n�

�r�xn�2 + a2�5/2�
 .

�11�

The first term comes from octupoles on opposite legs, the
sum runs along the rungs of the ladder, with the first piece
arising from same leg contributions and the second piece
from opposite leg contributions. A crucial point is how to
estimate the value of ��n�� In. This work pertains to physical
systems quite similar to cuprates. Experimental magnitudes
of the local magnetic �dipolar� moments, which are tilted 45°
out of the Cu-O plane, are of order 0.1
B.12 Thus we assume
that our maximal octupolar momentum �on top of the density
wave �DW�� is equal to ��Imax��4

�2
2 0.1
Ba2 and we will use

that value in our estimates. The case of on-leg oxygen, which
lie at the boundary of each cell, is special because then the
quadrupolar contribution does not vanish, and it will be dis-
cussed below.

One has to remember that the periodicity along the ladder
plays an important role in the computation of such a sum;
specifically, if the o-OCP were uniform along the ladder, all
the different contributions would cancel out, because then
��n�=��−n�, and the total magnetic field would be zero on
each atom. In our case we have an o-OCP on top of a DW
with a real-space periodicity �2kFo�−1, hence a magnetic field
with the same periodicity appears.

As a result one finds that, depending on the nature of the
lattice site x, the magnetic field contains either only octupo-
lar or both quadrupolar and octupolar contributions. �1� For
each on-leg oxygen atom, there are quadrupolar contribu-
tions coming from the currents flowing along the neighbor-

FIG. 1. �Color online� The phase diagram of two-leg Cu-O Hub-
bard ladders versus doping for UCu�0. Zero doping corresponds to
the half-filled case. Umklapp terms which open a gap in the charge
symmetric mode are not included here �Ref. 29�. SCd, CDW, and
SDW denote, respectively, d-wave superconductivity, charge-
density wave and spin-density wave states. OCP indicates that an
orbital current pattern is present on top of a density wave instability.
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ing elementary cells which are not pointing out to this atom
�the intensities of the currents are different in the two neigh-
boring cells�; see Fig. 2�b� numerically, we get a value of 50
Oe for the field. �2� For all other atoms �except the on-rung
oxygen� we get octupolar contributions �as shown in Fig.
2�a�� coming from currents flowing through unit cells other
than that of the atom: one piece stems from the single octu-
pole on the leg opposite to where site x resides and the other
from a sum of double octupoles along the ladder �a series
oscillating with a �2kFo�−1 periodicity and decreasing as
1 /r5�; numerically, we get a value of 10/20 �Oe� for the field.

We note that both types of contributions produce a stag-
gered field pointing in a direction perpendicular to the plane
of the ladder, which possesses the periodicity of the o-OCP.
The dipolar component and one of the terms in the octupolar
series are illustrated in the figure below.

This local magnetic field B� �x� break SU�2� spin rotational
symmetry. Usually, such symmetry breaking may occur in
the presence of spin orbit, which adds a L� ef f�x� ·S��x� term to
our Hamiltonian �it should be emphasized that both vectors
are taken at the same point�. Tools required to deal with such

a perturbation are readily available. We simply need to tailor
these to our case. Both operators are two o-band fermion
combinations, which, when coupled, will give four fermion
products �to first order�. Detailed analysis shows that such
L� ef f�x� ·S��x� terms indeed cover the presence of magnetic
field provided that hypothetical �periodic along x axis� field
B� �x� would have had only z component. For example, we
may check the form �in bosonization language� of four fer-
mion operators describing the coupling of the spin-density
wave �SDW� with the spin degree of freedom of carriers �an
example of this type of coupling is:
�oL↑

† �x��oR↑�x���oL/R,�
† �x��̂�oL/R,��x��� Thus, one can use the

theory of spin-orbit coupling �as a perturbation� to solve our
problem. The z-axis orientation of our perturbation is a con-
sequence of the high symmetry of the lattice, a point which
we emphasize in the next section.

C. Side effect of the o-OCP: New terms in the Hamiltonian

1. First-order term: Spin-dependent hopping

Because of the local magnetic fields that are generated by
the o-OCP, the on-site energies of each atom �except for the
on-rung oxygen�, will be different for carriers with spin up
and spin down. This can be viewed as local Zeeman split-
tings, which also affect overlap integrals for different spin
rotations. The d-p orbital overlaps, and thus the hopping am-
plitudes, will depend on Sz. This suggests that spin-
dependent hopping will be present. The additional hopping
term is defined by t���= ıt�·�� , where �� are Pauli matrices.
Our argument implies that t� has only z components. In gen-
eral there can be also other sources of t� such as coupling of

electrons orbital momentum L̂ with magnetic moment of
each triangle.

For Cu-O lattices, we can make generic statements re-
garding the possible spin-dependent hoppings caused by in-
teractions with finite out-of-plane moments �the treatment is
similar to a crystal-field splitting with a specific direction in
space�,

t� = ı��B��
n

�dx2−y2�L�̂ �dn�

�x2−y2 − �n
tp�dn

. �12�

Here dx2−y2 is the ground-state d orbital of the Cu atom lo-
cated at some site i; �dn� is an excited d state of that atom;
tp�dn

is the hopping amplitude between the Cu atom in the
state �dn� and a neighboring O atom in one of the p orbitals

represented by the state �p��; L�̂ is the orbital moment. One
has to remember that symmetry requires some of the hopping
integrals to vanish �for instance, tp�dxz

=0 and similarly

L̂�d3z2−r2�=0�. Thus lattice symmetry implies that t� has al-
ways only a z component.

Taking this extra term into consideration, first-order ef-
fects can be easily incorporated in our tight-binding model:
the problem can still be factorized in the spin variables �t� has
only a z component�. The magnetic field has o-band wave-
function symmetry, thus Zeeman splittings �and also overlap
integrals variations� will have the same intracell symmetry.

FIG. 2. �Color online� The two main contributions to the ampli-
tude of the magnetic field at lattice site x �orange circle� as a result
of the o-OCP flow: �a� the octupole moments �single octupole
=green square� which should be summed up for all elementary unit
�squares� along the ladder �except the one which contains lattice site
x� and �b� the quadrupole magnetic moment that is present only if x
is one of the on-leg oxygen; the field comes from the asymmetry of
OCP amplitudes in two neighboring unit cells �nonzero contribution
indicated in red�; crosses �dots� correspond to single magnetic di-
poles pointing into �out of� the page.
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For the OCP case, the splitting is purely vertical and it os-
cillates with kFo periodicity from unit cell to unit cell
�whereas in the more frequently discussed Rashba case it is
horizontal and the same for all the unit cells�, which gives
constructive interference within that band. The result is that
the o band is split—the hopping parameters of spin up and
down are slightly different.

There are three consequences of this type of splitting: �1�
the Fermi velocities of spin-up and -down states are not
equal anymore. �2� There is a mismatch of their Fermi vec-
tors. �3� The two bands may contain different amounts of d
and p orbitals

We do not need to discuss the last item because the eigen-
vectors of bands pairs are very similar. Let us instead focus
on the first two. The difference in the velocities, translated
into boson field language, yields terms of the form �c+
s+,
which affect the values of the parameters Kc,s+ and the form
of correlation functions. The modification of Kc,s+ has to be
taken into account in the initial condition of the RG flow; the
impact on correlation functions will be described in detail in
Sec. IV. The Fermi vector mismatch has an adverse impact
on perpendicular �OCP case� spin scattering, because mo-
mentum is not conserved during that process, any longer.
This effect will be accounted for much in the same way as
one treats slight departures from commensurability with dop-
ing in Mott transitions.

In our case, we may estimate �t�� / t�10−4 �considering that
the magnetic moment of a single loop is ��0.1
B�. This
value gives �kFi /kFi of the same order, so all these effects
can indeed be treated as a perturbations.

2. Second-order terms: Spin-flip scattering channels

Let us turn to the next order in perturbation, which yields
four fermion operators. In general these can be written in a
Dzyaloshinskii-Moryia �D-M� form

HD-M = D� ij · �S� i � S� j� . �13�

The value of the D-M interaction between two Cu sites i
and j separated by an O site l can be computed from the
third-order spin-dependent hopping perturbation. The general
expression is �where in the limit of small interactions � is
equal to the difference in the O and Cu on-site energies�

D� ij =
8

�3�
l

�tiltlj + t�ilt�lj��
l

�tiltlj� − tjltil� + t�il � t�lj� . �14�

The nonzero value of D� ij comes from spatial inhomoge-
neity of �by its definition periodic� OCP pattern, which im-
plies t�lj� t�il. Taking into account t��10−6 eV and using the
fact that �� t in Cu-based ladders �and when U→0 as for
the C2S2 phase, � determines interlevel distances�, we can
estimate D�10−5 eV �it is of order �t�� t

� �3�. This value is
one order of magnitude larger than magnetic dipole-dipole
interactions expected for such compounds �see Appendix�.

We see that in the OCP case, where t�� z, the crossterm in
the second parenthesis of Eq. �14� is zero, and hence D� is
perpendicular to the plane of the ladder. It also implies that
this four-fermion operator will be proportional to the asym-

metry between neighboring Cu-Cu links �ilth and ljth�. We
note that if the local magnetic moments were constant along
the ladder, D� =0.

Thus, the periodicity of the symmetry-breaking perturba-
tion plays a critical role here. The OCP is superimposed on a
DW with a �2kFo�−1 periodicity in real space, and the Fourier
transform of D�x�—which originates from the local magnetic
fields—has components at �q�=2kFo only, i.e., corresponds to
a backward scattering vertex. This mirrors the fact that the
spin rotational symmetry-breaking physics brought about by
currents is due to the o band and can only involve carriers
scattering in this band.

When D� ij � z one may deduce that the processes which
explicitly break spin rotational symmetry are of the form

ŜxŜy. Using spin-flip operators we have terms such as S+
†S−

+H.c.. Physically this indicates that spin is not a conserved
quantity anymore and that new instabilities may arise as a
result of the additional scattering channels. The new term in
the Hamiltonian is

HD-M = gfo	 �Lo�
† �Ro�

† �Lo�̄�Ro�̄, �15�

where gfo is the 2kFo component of the Fourier transform of
Dij. This can be bosonized in the standard way,

HD-M = gfo	 dr cos�2	so� = gfo	 dr cos�	+s + 	−s� .

�16�

Since spin-flip terms are involved in the fermionic operators,
none of these will give simple density-density contributions
to the bosonized expression of the Hamiltonian; instead they
produce nonlinear interaction terms which require RG per-
turbative treatment. They may thus open a gap in the spec-
trum and cause new types of orderings in the ladder �which
were previously forbidden as they explicitly break SU�2�
symmetry�. We investigate this possibility in the next sec-
tion.

III. ANALYSIS OF THE SU(2) SYMMETRY-BREAKING
TERMS USING BOSONIZATION AND RG

ARGUMENTS

The standard way to deal with four fermion operators,
which produce cosine terms in bosonization language, is to
follow an RG approach. This was extensively discussed in
the context of SU�2� symmetric two-leg ladders �see, for
example, Sec. III in Ref. 29� and we transpose it to the
present situation.

As discussed in the previous section, we add the gfo
�D�2kFo�-type contributions to the Hubbard-type interac-
tions and, following the standard procedure for cosine terms
in the bosonization representation, we perform an RG analy-
sis of the set of four fermions operators. Because spin-flip
processes are now allowed, we have to add scattering events
where—for instance—two incoming fermions are in a
spin-up state and the two outgoing particles are in the spin-
down state.
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A. Extended system of RG equations

We proceed along the same lines as in our previous stud-
ies of two-leg Cu-O ladders; however additional subtle fac-
tors have to be taken into consideration. The fact that D�q�
has always just one component in momentum space simpli-
fies the analysis and enables us to exclude some processes

One should take the system of RG equations derived for
two-leg Cu-O Hubbard ladders �Eqs. �17�–�31� in Ref. 29�
and add to it two equations describing the renormalization of
the gfo terms �intra o-band spin-flip scattering�,

dgf1

dl
= gf1�2 − �K2

−1 + K1
−1�� + P1Q1�K2

−1 − K1
−1�gf2,

�17�

dgf2

dl
= − gf2�2 − �K2

−1 + K1
−1�� + P1Q1�K2

−1 − K1
−1�gf1,

�18�

where gf1=
gfo+gf�

2 , gf2=
gfo−gf�

2 , and by definition, in our case,
gf��0 initially. We are using the same notation as in Ref.
29: K1,2 are the LL parameters of the eigenmodes in the spin
sector, i.e., linear combinations of Ks� such that K1= P1

2Ks−
+Q1

2Ks+ and K2= P1
2Ks+−Q1

2Ks−. The initial values of Ks�, P,
and Q are determined from the Fermi velocities in the two
bands and interactions of the forward type which are in-

cluded in the LL matrix K̂ �note that P1
2+Q1

2=1�. Since gfo
has a cosine form in bosonization language, it does not

change the initial values of the entries of the LL matrix K̂.
Basically the new couplings gf1 and gf2 can be treated in

a way similar to g1, g2; as they pertain to the 	+s field, these
cannot couple with other interactions gi. The second-order
gfo

2 terms will enter the renormalization equations of the LL
parameters Ki and cot 2� �eigenbasis angle� in the spin sec-
tor,

�
dK1

dl
=

1

2
�gf1

2 + gf2
2 � + f�P1��gf1gf2� , �19�

�
dK2

dl
=

1

2
�gf1

2 + gf2
2 � − f�P1��gf1gf2� , �20�

�
dB12

dl
= h�P1�gf1gf2, �21�

where, as before

f�P1� = �P1Q1 +
1

4

P1
2 − Q1

2

P1Q1
�−1

, �22�

h�P1� = ��P1Q1�2 + 0.25�P1
2 − Q1

2��−1. �23�

We notice that, as one might have expected, only the spin
sector is affected by the new nonlinear terms. The modifica-
tions that these terms cause to the RG flow �in particular, as
far as the eigenbasis rotation is concerned� are not easy to
evaluate, because—as we argue below—several effects play
a role. A qualitative analysis of the RG equations only allows

one to predict that the evolution of cot 2� during the flow
will be much slower than in the standard case.

The initial values of the Ki parameters will be different
from what they are in the standard case, if only because of
spin-charge mixing �following our discussion in Sec. II C 1,
spin up and down are not degenerate any longer�. This effect
was partially accounted for by Moroz et al.:34 they found that
it can be implemented through a proper change in the scaling
dimension of cos��� �Eq. �38� in Ref. 34�. More explicitly,
Ks+ and Kc+ will mix �just as Ks� do, in response to particle-
hole symmetry breaking� with a mixing parameter propor-
tional to �̃= �VF↑−VF↓� /VF.

Assuming that the o band is decoupled from the � band,
we can easily carry over Moroz’s results to the ladder case
and conclude that the mixing of spin and charge generated by
the spin-orbit coupling is irrelevant in the o-OCP case, be-

cause here �̃��̃crit=
Vs+

0

VFo
.

Yet, another effect does play a role. As we pointed out in
the band-structure discussion, because of the Fermi vector
mismatch, perpendicular spin scattering is reduced compared
to parallel spin scattering �as is the case with umklapp scat-
tering, slightly away from kF=� /2�. This causes a shift of
the phase boundaries in the ground-state phase diagram but it
does not generate any new phases. To demonstrate this ex-
plicitly requires a full blown RG treatment but heuristic ar-
guments pertaining to the RG flow in the C2S2 phase—
presented in the next section—give clear indications of this
trend.

B. Relevance of the gf terms

The overall structure of the phase diagram that emerges
from the RG analysis, when these additional terms are in-
cluded, is similar to that obtained in our previous papers, so
we discuss here the stability of the phases that were found
for ladders possessing SU�2� symmetry. Let us start from the
half-filled case when there is on average one carrier per cop-
per atom and move toward the highly doped regime when
the � band is nearly empty.

The low-doping C1S0 phase is not affected, since the
o-OCP does not exist, and hence D�2kFo�=0. However, to be
on the safe side, we have checked that even if D�2kFo��0
interactions of the gfo type are irrelevant. This can be justi-
fied by symmetry considerations regarding the eigenbasis: in
the low-doping regime B+/− is the proper basis of LL modes,
thus a small gfo, which induce instability in the Bo� basis
cannot be relevant in this doping range. It must be interband
spin-flip scattering which causes a relevant perturbation of
the C1S0 phase—the possibility of the other types of spin-
flip interactions are briefly discussed in Appendix.

A significant difference, caused by gfo, is found for the
massless C2S2 phase that was present in a finite, intermedi-
ate doping range of the SU�2� symmetric problem. We recall,
that for this phase, Bo� is the proper basis of the charge
sector, thus interband instabilities are suppressed. Adding gfo
favors a flow toward this basis. We can simplify our analysis
even further if we assume that in given range of dopings, the
RG equations describing the evolution of the o band are
decoupled from the rest of RG system. This allows us to
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work with Eq. �17� and the equation �derived previously29�
describing intraband backscattering,

dg

dl
= g�2 − �K2 + K1�� + P1Q1�K2 − K1�g ,

go was proved to be irrelevant since the initial K2�1 and we
would need a large value of Q1

2 in order to open a gap in �so.
Roughly speaking Kso was approaching its fixed point Kso
→1 too slowly and the flow was finally only marginal. In
our extended case gfo tends to increase Kso or at least �in the
beginning� protects its constant value. The arguments given
in Ref. 29 work exactly in the opposite way for the cos 	so
instability, which is relevant provided Kso�1. This can be
quantified by studying an invariant of our extended RG
system,

A2 = �Kso − 1�2 − �go
2 + gfo

2 � . �24�

We see that by adding the new terms A2 is shifted �from A
�0� to negative values; it is known that an imaginary A in
the Kosterlitz-Thouless RG flow corresponds to a divergent
trajectory that is to a relevant instability destroying the LL
fixed point. The only possibility corresponding to that case is
that gfo becomes the relevant perturbation.

Our earlier observation that momentum mismatch reduces
the initial value of the perpendicular spin-scattering interac-
tion while leaving those of the parallel and spin-flip pro-
cesses unchanged reinforces the inequality �Kso−1��g�. We
then study a Kosterlitz-Thouless RG flow with all the g�

terms smaller than the g�o terms; in that case we find that we
move away from the SU�2� separatrix and scale toward
larger Kso, which favors the new intermediate phase �with the
	 field ordered�.

One finds that a new gap opens in the spectrum of the 	so
field. We find that C2S2→C2S1� with an ordering within the
o band. Using a bosonic version of order operators we find
that SDW in the plane of the ladder �SDWx in the o band� is
favored. The order operator is defined as follows:

OSDWo
x �x� = �oR↑

† �oL↓�x� + �oR↓
† �oL↑�x�

� exp�− 2ıkFox�exp�ı�2�co�x��cos��2	so�x�� .

The interaction breaking spin rotational SU�2� symmetry
dominates in this regime, so it is clear that the resulting
phase also breaks this symmetry.

This simplified analysis is confirmed when we perform
the actual RG calculation including the additional terms. Fur-
thermore, we are able to obtain the exact boundary between
the gfo and go dominated phases �i.e., the boundary between
the SU�2� symmetric and symmetry-broken phases�. We also
see that the assumption Kso�const is justified, so we can
approximate the value of a gap by taking the following RG
flow:

dKso

dl =0, from which one deduces that a proper estimate
of the gap value is,31

� � �0gfo
1/2−2Kso

−1

. �25�

Assuming Kso�2 �strong, but local, Hubbard interaction
limit� we find ��0.01D, which gives quite a small but ex-
perimentally accessible transition temperature ��1,10� mK.

For the C2S1 phase the additional gfo terms compete with
the interaction go=g1+g2, so the theory of spin-flip effects in
the case of a single chain applies. The reasoning is very
similar to that for the C2S2 phase, except that now go domi-
nates. To put it on a more quantitative level: as long as the
initial gf is smaller than go—which is a reasonable assump-
tion, because go is a relevant perturbation dominant in this
doping range—the ordering of the �so field overwhelms
spin-flip processes. Giamarchi and Schulz35 have found that
the critical line for this problem is at gf =go. This assumption
can fail only close to the low-doping boundary of the C2S1
phase since the strength of go decreases as one reaches �c2.
We can thus conclude that, except for a shift of the lower
boundary, the charge-density wave �CDW� state is unaf-
fected by the spin-orbit coupling. The new phase diagram, in
the presence of gfo is summarized in the figure below
�Fig. 3�.

IV. DISCUSSION

The breaking of SU�2� symmetry, that occurs in the pres-
ence of the OCP, opens a gap in the spin mode of the o band.
In the range of dopings where previously a critical line was
found, the C2S2 phase is replaced by a different ground
state, namely, a phase with in-plane SDWx denoted by
C2S1�. An important question is whether this unusual phase
is detectable, or if any small symmetry breaking will make it
undistinguishable from the standard, high-doping C2S1
phase. To answer this question we present a discussion along
three lines: the first one is devoted to high-temperature cor-
relation functions, the second to transport properties, and the
third to magnetic properties. A limitation of the discussion
presented below, which affects experiments, is the energy
scale: the effects will be clearly visible only in a tempera-
tures range below the gap �.

One may also wonder whether the existence of the OCP is
the only source of SU�2� symmetry breaking. As the Cu-O
lattice forms a fairly rigid structure, it is stable both against
crystal-field d levels splitting and standard L-S coupling �Z2

on heavy Cu ions �with Z=29�, and, insofar as we may ne-

FIG. 3. �Color online� Modified phase diagram �to be compared
with Fig. 1� of the two-leg Cu-O ladder when intra-o-band spin-flip
processes are included: as before � is the hole doping and tpp inter-
oxygen hopping. In the intermediate doping range—where a C2S2
phase was previously found in the SU�2� symmetric problem, a
C2S1� state is present, which has a SDW in the plane of the ladder
as a result of the opening of a spin gap.
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glect size effects, the presence of an OCP is the source of
symmetry breaking. A detailed discussion of these issues will
be presented in Appendix.

A. Correlation functions for the LL phase

Correlation functions for LL with spin-orbit interactions
have been evaluated both for two-34 and four-fermion36 op-
erators. Let us briefly summarize here their main features.
Chiral separation is still preserved and correlators can still be
factorized in terms of two modes but not spin and charge
anymore. Interactions and spin-orbit coupling �L-S� reinforce
one another; in the presence of L-S, the density of states
decays faster than for free fermions, and the difference be-
tween the velocity of the two modes �V=V↑−V↓ is propor-
tional to t�. According to Ref. 36 the exponents are slightly
changed when a term proportional to a difference of the ve-
locities is added �we use these results slightly modified, be-
cause it was Rashba-type spin-orbit coupling treated in Ref.
36, while we are interested in Zeeman-type coupling�; for
example, the behavior of our dominant fluctuation is given
by �at zero temperature, up to first order in �V�,

OSDWo
x �r� � cos�2kFox�r−�Kco+1/Kso−	s�, �26�

where 	s��V. As a consequence the four fermion operators
have a nonzero conformal spin proportional to �V.

In our case intra-o-band L-S coupling is quite weak �this
small value enabled us to neglect some effects of spin-charge
mixing during the RG flow�. Accordingly, in the high-
temperature LL phase, the functional �power-law� form of
the correlators will be the same for the C2S1 and C2S1�
phases, and the only difference comes from small changes in
the exponents. Taking into account small �and oscillating�
value of �k ��V�, and experimental difficulty with extracting
exact value of bare LL exponent Kio, we doubt that C2S1�
existence can be shown in this way.

More visible signatures can be expected at low tempera-
ture where the 	so field is ordered, as all the observables
depending on magnetic susceptibilities—such as NMR
responses—are affected �notwithstanding the relatively
smallness of the gap�: if the 	so field is locked, then averages
over the �so field go abruptly to zero. According to Ref. 29
one expects quite abrupt suppression of the o -band elec-
tronic part of the Knight-shift K and relaxation rate �1 /T1� at
T�� �for example, K��cos �so��.

B. Transport properties: Analysis of the impurity problem

Let us briefly discuss here what happens if a nonmagnetic
impurity is introduced in the two-leg Cu-O ladder. This prob-
lem was discussed in detail recently;37 here we focus on the
consequences of spin rotational symmetry breaking. Specifi-
cally, we investigate the doping range where the C2S2 phase
was stable in the absence of spin-orbit scattering. In the pre-
vious section we have shown that Kso behaves differently at
the lowest temperatures because of a gap opening due to
spin-orbit terms. So the temperature dependence of the trans-
mission through a single impurity—which is connected to
the renormalized backscattering Vo�l ;K�—will also be af-
fected.

Spin-orbit coupling is present only inside the o band, so
we may restrict our analysis to reflection �transmission� of
carriers inside this band. In such a simplified case, the RG
equation for backscattering on the impurity is given by

dVo

dl
= �2 − Kso − Kco�Vo �27�

instead of Eq. �15a� in Ref. 37, where it was assumed that
Kso=1. From this, it is clear that increasing Kso �which pro-
motes an ordering of the 	so field� can cause Vo to become
irrelevant. More precisely, this operator is always relevant at
the beginning of its flow, because Kco�1 �and this value is
constant in the absence of umklapp terms�, but this trend
may change as the energy is decreased. This would give rise
to an unusual temperature dependence of the conductivity.

On the other hand, if the initial value of Kco is sufficiently
small �strongly interacting case�, we would arrive at an open
boundary problem �Vo relevant�. In our previous paper,37 in-
traband Kondo physics was suggested for this case. The fol-
lowing RG equation describes this regime �assuming open
boundary conditions �OBC��

dJo

dl
= Jo�1 − Kso

−1� . �28�

We see here that if SU�2� symmetry is broken by the o-OCP,
this coupling becomes relevant, which confirms our previous
predictions. In the limit of quite strong Hubbard interactions
Kco→1 /2—which is the case when Kso�1—it can give rise
to the unusual regime predicted many years ago by Furusaki
and Nagaosa38 who took second-order tunneling processes
into account, showing that double spinon tunneling events
may dominate the physics around the impurity. The compe-
tition between OBC Kondo physics and spinon transmission
will take place in the strong interaction limit �the barrier
asymmetry will also play a significant role� but this is be-
yond the scope of the present paper.

An experimental consequence of this effect, is that in the
phase where spin-orbit coupling dominates, the usual line
broadening caused by impurities that is expected in an NMR
measurement, will not be seen. This is because spinons can
be transmitted through nonmagnetic impurities �and hence
the backscattering in the spin sector is expected to be weak�.

C. Magnetic properties

Obviously, the local magnetic field will affect the Knight
shifts of the NMR lines. The magnetic field is alternating and
incommensurate with the lattice: as a result of such local
magnetic field variation NMR lines will not have standard
�thermal broadened� shape but it will depend on the number
of atoms feeling a given value of the field N�Bloc�. The in-
commensurability with the lattice allows us to rephrase this
question and ask what is the density of states for a cosine
curve. Thus the NMR line shape resemble 1D density of
states with two peaks line shape �1D density of states has
1 /� singularity coming from the bottom of the cosine band�.
The splitting is equal to 2Bmax and, because the effective
field is different at each atom inside unit cell, thus different
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line shapes are expected: the widest on on-leg oxygen atom,
and nonperturbed �zero split� on the on-rung, central oxygen.
This effect should be distinguished from the one described in
the previous paragraph, in total OCP modifies NMR lines in
two ways: it suppress the amplitude of the satellites, of the
impurity at the origin, and splits the central peak. Unfortu-
nately estimated values of this splitting are at the limit of the
current experimental resolution, so this primary effect might
be difficult to detect. One can alternatively detect anisotropic
g factors through Zeeman effect.

There will also be a signal coming from the magnetic
ordering itself. We predict that there is a magnetic moment
component perpendicular to the ladder plane due to Bef f in-
duced by the o-OCP �primary effect� but there is also a sec-
ondary effect: from our RG procedure we have found an
in-plane component corresponding to a SDWx with the same
periodicity as for the staggered moments along z. The fact
that both components have the same periodicity in k space,
2kFo, is quite important: they can add up creating a moment
tilted out of plane. The tilting angle will be determined by
their relative amplitudes. We have started with 
z=0.1
B
which induce an ordering gap �. The value of 
x is con-
nected with the average 
x��cos 	so� so it will be reduced
with increasing temperature. Even at zero-temperature quan-
tum fluctuations cause �cos 	so��1. In order to estimate the
average at zero temperature we compare the values of the
gap we found in Sec. III with the one found when the LL
velocity �kinetic energy� goes to zero ��. It is known that
����D� �. The ratio � /��=0.01 is proportional to �cos 	so�
and allows us to estimate 
x�0.01
B, from which we de-
duce a tilting angle on the order of ��6° �counted from
vertical axis�. This kind of modulated �in space� magnetic
moments composition should be detectable using elastic neu-
tron scattering but quite low temperature ��10 mK� would
be required for this experiment.

V. CONCLUSIONS

The main question which we addressed in this work was:
what is the feedback effect of an OCP on the properties of
the ladder, if one takes into account the coupling between the
electrons and the induced orbital moment? Such feedback
can in fact potentially provide an additional method to probe
the existence of the OCP; it does not require a direct mea-
surement of the induced—and quite tiny—magnetic field.
Detecting such feedback can however prove challenging due
to two important constraints. First, one would need to obtain
highly doped ��25%� two-leg ladders; second, experiment
have to be performed at temperatures below �. Still, we hope
that our present detailed insight into the low-energy proper-
ties of the intermediate phase will invite experimental and
numerical investigations.

A nontrivial issue is how reliable our value of � is. We
have used a weak-coupling RG approach which is reasonable
in the case of the otherwise gapless C2S2 phase: the state-
ment �� �D� � is justified. Thus, in our framework the only
way to increase �, assuming a given amplitude of the OCP
��
z� is by taking larger � coefficient in Eq. �12� �this
would give larger �t���. This may arise because of particular,

unknown property of copper oxides and/or constructive in-
terference of L-S couplings defined on the top of the DW.
Larger gap value will push the tilt angle � toward larger
values.

Beyond the experimental manifestations, which we have
discussed in Sec. IV, the magnetic moment pattern should be
detectable using elastic neutron scattering. Such experiments
were recently performed in the pseudogap phase of two-
dimensional �2D� HTSC.12,15 The data was interpreted as
evidence for out-of-plane magnetic moments with an alter-
nating tilt. There is a similarity with our prediction but one
must not forget that there are several important differences
between the OCP that we have discussed and the one that
could serve to interpret the experiments in cuprates: in our
1D case the pattern is modulated in space with a kFo period-
icity �this modulation was in fact critical to obtain a nonzero
coupling with the spin degree of freedom� and has a different
internal symmetry: 	1 instead of 	2 in Varma’s notation.11

One must keep in mind these caveats, nonetheless our result
invites one to look for similar effects in two-leg ladders.

To summarize: despite certain similarities, the 2D cu-
prates studied in Refs. 12 and 15 cannot be treated as an
experimental realization of our problem. A good candidate
would be a doped ladder, such as the so-called telephone
compound �Sr14−xCaxCu24O41�, provided sufficient doping
levels can be attained �from the standpoint of solid-state
chemistry, this is a highly nontrivial task�. Neutron-
diffraction or 
SR experiments would be desirable for such a
ladder system.

An important point is the possible role of apical oxygen.
In the framework of a tight-binding model the new hoppings
will make the two bands �o and �� more asymmetric; this
implies larger effective tpp, which shifts the C2S2 phase to-
ward smaller dopings � �see Fig. 1�. New conducting paths
will also increase the OCP amplitude for a given value of tpp,
shifting the critical tpp

min to smaller values. As a result the new
phase C2S1� will be easier to access experimentally in the
��−

tpp

tpd
� plane. The new current paths can also give rise to

higher-order L-S couplings: for example, 
� can induce addi-
tional currents flowing in the loops involving the apical oxy-
gen. We may conclude that including apical oxygen should
favor the effects predicted in this paper. This statement,
about a positive role of apical oxygen, is in qualitative agree-
ment with recent work21 studying currents emerging because
of particular spin textures.

A nontrivial outcome of this work is that it underscores
the hidden connection between a phase with OCP and a
pseudo �partial� gap in the spin sector. The emergence of
such a gap shields the intermediate, previously marginal,
phase from weak perturbations such as interladder hopping
or disorder. In conclusion our work shows that a strong per-
turbation is caused by the presence of the OCP and validates
the phase diagram for two-leg Hubbard ladders which had
been obtained in Ref. 30.

APPENDIX: OTHER SU(2) SYMMETRY-BREAKING
MECHANISMS

In this appendix, for the sake of completeness, we briefly
discuss alternative sources of spin rotational symmetry
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breaking. A few of them come readily to mind: dipole-dipole
interactions, standard L� ·S� spin-orbit coupling and Rashba
mechanism.

�1� Direct spin-dipolar interactions. The value of this spin
anisotropy depends on the average distance between carriers
as �1 / �r�3. The �r� is obviously changing when one add
carriers into the ladder which implies a doping dependence.
We can use values found for the half-filled case in a similar
compound39 and simply assume that carriers are more di-
luted. For the most interesting phase �C2S2� there are at least
two times less carriers which gives reduction by a factor 8,
thus we have estimated the dipole-dipole anisotropy to be
one order of magnitude smaller than OCP effects.

Besides, in the C2S2 regime, OCP effects are predomi-
nant because they possess the proper o-band symmetry, in
contrast with the generic form of dipolar interactions. Thus
we assume that this mechanism cannot compete nor mimic
the OCP effects predicted in this paper.

�2� The spin orbit L� ·S� coupling is a fairly typical effect
for heavy atoms. Thus we should check whether it could
induce much stronger effects than those predicted in our
analysis.

The key point is the symmetry of the lattice: so long as
copper atoms are sitting in a C4 symmetric environment,
hoppings to and from all the neighboring oxygen will con-
spire to give a zero net outcome. We can also invert this
argument and say that if electron ordering finds a way to
lower the rotational symmetry of a lattice then it would pro-
vide an efficient way to increase the � coefficient in Eq. �12�
and thus enhance effects discussed in this paper. This prop-
erty does not hold if the lattice is distorted �in the Peierls or
Jahn-Teller cases for instance� or warped. As the lattice is
quite rigid �and we are not working at half filling� for lad-
ders, these effects are not expected to be significant in the
bulk. The situation may be different at an interface but we
are not dealing with such a case in this paper. This is the
reason why we focused on OCP-induced effects.

The only exception might be if the primary OCP involved
apical oxygen. Let us make a gedanken experiment and as-
sume that there is a current flowing through some of bonds
toward these atoms. This might enhance the total amplitude
of the OCP, lowering the value tpp

�crit�. It can also be a higher-
order perturbation induced by the in-plane SDW�x�. The
conducting bonds tend to be shorter which can displace api-
cal oxygen. The emergence of such distortion will lower the
lattice symmetry from C4 to C2 allowing for the nonzero net
expectation value of the spin-orbit coupling on Cu atoms.
This would cause a Sz-dependent hopping, as can be seen
from Eq. �12� which shows that the displacement is equiva-
lent to admixing dx2−y2 orbitals with the apical oxygen band.
Importantly, this effect is caused by the OCP, thus it should
have the same periodicity and phase. This additional L-S
coupling enhances the OCP induced effects discussed above.

�3� Another possible mechanism of interest in the cuprate
case, giving spin-dependent hopping, arises from the Rashba
effect which couples directly electron motions to their spins.

It describes the precession of carriers in the presence of a
strong electric field. The Rashba Hamiltonian is

HR = ��k� � n�� · �� , �A1�

where � is a coupling constant and n� is a unit vector in the
electric field direction. Obviously, this coupling �which de-
pends on the total momentum of the carrier� will be different
for the o and � bands, because of the inequality kFo�kF�

�one should not forget that kF� has large on-rung compo-
nents�.

First, let us consider the bulk of a ladder material. The
electric field which we expect will lie in the plane of the
ladders in a direction perpendicular to the legs. It will result
from the arrangements of DW in neighboring ladders �so
again it will be restricted to the high-doping regime and
again have a �2kFo�−1 periodicity in real space�. There are
two limitations here: these arrangements can only be stable
for certain dopings �quarter filling� and they are expected to
be quite small in amplitude.

Straightforward analysis �with again crucial element of
DW modulation� of Eq. �A1� gives a spin-dependent hopping
parameter t���0,0 , t��, so again it has only a z component. It
implies that the analysis done in the core of this paper ap-
plies also in this case. Thus, this kind of Rashba �if such kind
of perpendicular arrangement does exist� would enhance the
effects predicted before. The only difference which would
allow us to distinguish this case from that induced by an
OCP is the magnetization component perpendicular to the
ladder plane.

Let us finish with a brief discussion of an interface where
the Rashba mechanism can induce quite new physics. In this
case the electric field will be perpendicular to the ladder
plane because it arises from charge-polarization effects at the
interface. On the interface, when charge differences are very
high �polarization catastrophe� at very small �interatomic�
distances, this effect can be really huge. What is more, in
contradistinction with the mechanisms that we discussed un-
til now, the amplitude is not alternating in space �the sign of
the coupling is not oscillating�.

In the case of strong electric field there are only nondi-
agonal �spin-flip� hoppings; level splitting is induced by the
Rashba term Eq. �A1� �if the electric field E� is in the z
direction, HR can be expressed as ��t� ,0 ,0� ·�� in the o band
and approximately by �0, t� ,0� ·�� in the � band�. In this case
spin and charge are strongly mixed thus spin up and spin
down are not a good quantum number any longer.

Also spin-flip interactions will be highly nontrivial in
such a model: we may find t�ij with perpendicular orienta-
tions, for instance, when the two scattering carriers are from
two different bands. Thus it is the last term in the parenthesis
of Eq. �14� which is nonzero; we are then dealing with inter-
band scattering. We note that both t� lie in the ladder plane, so
that, once again, D� ij � z �spin-flip process�. We expect very
different physics emerging in this case, which is out of scope
of this paper. A detailed RG analysis will be postponed to a
future publication devoted to surface effects.
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